
WEB DEVELOPMENT
COURSE
HTML
LEARN FROM SCRATCH TO ADVANCED

HTML INTRODUCTION
Today, I'm writing this tutorial to create a resource that will help you learn
HTML in less than 30 days. Here's a recommended timeline for learning HTML,
based on your educational background:

High School students and younger: Around 25 days
Those beyond High School: Around 20 days
College students and above: Around 10-20 days

You may be wondering why I'm discussing these timelines. It's important for me to
set expectations before you start your journey of learning html with me.

HTML INTRODUCTION
Today, I'm writing this tutorial to create a resource that will help you learn
HTML in less than 30 days. Here's a recommended timeline for learning HTML,
based on your educational background:

High School students and younger: Around 25 days
Those beyond High School: Around 20 days
College students and above: Around 10-20 days

You may be wondering why I'm discussing these timelines. It's important for me to
set expectations before you start your journey of learning html with me.

What is HTML?

HTML (HYPERTEXT MARKUP LANGUAGE) WAS CREATED BY TIM BERNERS-LEE IN 1991 AS A STANDARD FOR CREATING
WEB PAGES. IT'S A MARKUP LANGUAGE USED TO STRUCTURE CONTENT ON THE WEB, DEFINING ELEMENTS LIKE
HEADINGS, PARAGRAPHS, LINKS, AND IMAGES. HTML FORMS THE BACKBONE OF WEB CONTENT. IN LAYMAN'S TERMS,
HTML IS LIKE THE SKELETON OF A WEBSITE. IT'S A SET OF INSTRUCTIONS THAT TELLS A WEB BROWSER HOW TO DISPLAY
TEXT, IMAGES, VIDEOS, AND OTHER ELEMENTS ON A WEBPAGE. THINK OF IT AS THE BUILDING BLOCKS THAT CREATE THE
STRUCTURE AND LOOK OF A WEBSITE, SIMILAR TO HOW BRICKS AND MORTAR ARE USED TO BUILD A HOUSE.

HTML IS THE LANGUAGE OF THE WEB, USED TO CREATE WEBSITES.
HTML DEFINES THE BAREBONE STRUCTURE OR LAYOUT OF WEB PAGES THAT WE SEE ON
THE INTERNET.
HTML CONSISTS OF A SET OF TAGS CONTAINED WITHIN AN HTML DOCUMENT, AND THE
ASSOCIATED FILES TYPICALLY HAVE EITHER A ".HTML" OR ".HTM" EXTENSION.
THERE ARE SEVERAL VERSIONS OF HTML, WITH HTML5 BEING THE MOST RECENT VERSION.

FEATURES OF HTML
EIT IS PLATFORM-INDEPENDENT. FOR EXAMPLE, CHROME DISPLAYS THE SAME PAGES
IDENTICALLY ACROSS DIFFERENT OPERATING SYSTEMS SUCH AS MAC, LINUX, AND WINDOWS.
IMAGES, VIDEOS, AND AUDIO CAN BE ADDED TO A WEB PAGE (FOR EXAMPLE - YOUTUBE
SHOWS VIDEOS ON THEIR WEBSITE)

IN A NUTSHELL:

WHY THE TERM HYPERTEXT & MARKUP LANGUAGE?
THE TERM 'HYPERTEXT MARKUP LANGUAGE' IS COMPOSED OF TWO MAIN WORDS: 'HYPERTEXT'
AND 'MARKUP LANGUAGE.' 'HYPERTEXT' REFERS TO THE LINKING OF TEXT WITH OTHER DOCUMENTS,
WHILE 'MARKUP LANGUAGE' DENOTES A LANGUAGE THAT UTILIZES A SPECIFIC SET OF TAGS. THUS,
HTML IS THE PRACTICE OF DISPLAYING TEXT, GRAPHICS, AUDIO, VIDEO ETC. IN A CERTAIN WAY
USING SPECIAL TAGS.

NOTE: TAGS ARE MEANINGFUL TEXTS ENCLOSED IN ANGLE BRACES, LIKE '<...>'. FOR EXAMPLE, THE
'<HEAD>' TAG. EACH TAG HAS A UNIQUE MEANING AND SIGNIFICANCE IN BUILDING AN HTML PAGE,
AND IT CAN INFLUENCE THE WEB PAGE IN VARIOUS WAYS.

HTML IS A MARKUP LANGUAGE AND NOT A PROGRAMMING LANGUAGE.
IT CAN BE INTEGRATED WITH OTHER LANGUAGES LIKE CSS, JAVASCRIPT, ETC. TO SHOW
INTERACTIVE (OR DYNAMIC) WEB PAGES

QUICK EXERCISE:

OPEN A WEBPAGE OF YOUR CHOICE, RIGHT-CLICK ON THE BROWSER, AND SELECT 'VIEW PAGE
SOURCE,' AND THEN YOU WILL SEE THE HTML CODE FOR THAT PAGE.

A BEAUTIFUL ANALOGY TO UNDERSTAND HTML, CSS, AND JAVASCRIPT:

THIS IS THE CODE THAT THE SERVER SENT TO DISPLAY THE PAGE YOU'RE CURRENTLY VIEWING. IN
THIS TUTORIAL, WE'LL LEARN HOW TO WRITE THIS TYPE OF CODE USING HTML.

IN BUILDING A WEBPAGE, THINK OF HTML, CSS, AND JAVASCRIPT AS DIFFERENT PARTS OF A CAR.
HTML IS LIKE THE CAR'S SKELETON, FORMING THE BASIC STRUCTURE AND FRAME. CSS ADDS THE
PAINT AND FINISHING TOUCHES, MAKING THE CAR LOOK APPEALING WITH COLOR, STYLE, AND
DESIGN. JAVASCRIPT IS SIMILAR TO THE ENGINE AND MECHANICAL PARTS, INFUSING THE CAR
WITH FUNCTIONALITY, MOVEMENT, AND INTERACTIVE FEATURES. SIMILARLY, WHEN DEVELOPING A
WEBSITE, HTML LAYS OUT THE STRUCTURE, CSS ENHANCES ITS VISUAL APPEAL, AND JAVASCRIPT
PROVIDES INTERACTIVITY AND DYNAMIC CONTENT

HISTORY OF HTML:
IN 1989, TIM BERNERS-LEE ESTABLISHED THE WORLD WIDE WEB (WWW), AND IN 1991, HE
CREATED THE FIRST VERSION OF HTML.
FROM 1995 TO 1997, FURTHER WORK WAS DONE TO DEVELOP AND REFINE DIFFERENT VERSIONS
OF HTML.
IN 1999, A COMMITTEE WAS ORGANIZED THAT STANDARDIZED HTML 4.0, A VERSION STILL USED
BY MANY TODAY.
THE LATEST AND MOST STABLE VERSION OF HTML IS 5, ALSO KNOWN AS HTML5.

FEEL FREE TO READ MORE HISTORY OF HTML HERE ON THE HTML WIKIPEDIA PAGE BUT I
WILL MOVE AHEAD AND COVER IMPORTANT ASPECTS OF HTML.

https://en.wikipedia.org/wiki/HTML#:~:text=HTML%20version%20timeline

IN BUILDING A WEBPAGE, THINK OF HTML, CSS, AND JAVASCRIPT AS DIFFERENT PARTS OF A CAR.
HTML IS LIKE THE CAR'S SKELETON, FORMING THE BASIC STRUCTURE AND FRAME. CSS ADDS THE
PAINT AND FINISHING TOUCHES, MAKING THE CAR LOOK APPEALING WITH COLOR, STYLE, AND
DESIGN. JAVASCRIPT IS SIMILAR TO THE ENGINE AND MECHANICAL PARTS, INFUSING THE CAR
WITH FUNCTIONALITY, MOVEMENT, AND INTERACTIVE FEATURES. SIMILARLY, WHEN DEVELOPING A
WEBSITE, HTML LAYS OUT THE STRUCTURE, CSS ENHANCES ITS VISUAL APPEAL, AND JAVASCRIPT
PROVIDES INTERACTIVITY AND DYNAMIC CONTENT

HTML WORKING
YOU MUST HAVE HEARD OF FRONTEND AND BACKEND. FRONTEND REFERS TO THE VISIBLE PART OF A
WEBSITE OR APP THAT USERS INTERACT WITH, LIKE THE TABLES, IMAGES, AND BUTTONS. IT'S BUILT USING
LANGUAGES LIKE HTML, CSS, AND JAVASCRIPT. THE BACKEND, ON THE OTHER HAND, HANDLES BEHIND-
THE-SCENES OPERATIONS LIKE STORING AND PROCESSING DATA WHEN USERS INTERACT WITH THE
FRONTEND. IT USES LANGUAGES LIKE PYTHON, RUBY, AND JAVA. IN ESSENCE, FRONTEND IS WHAT USERS
SEE, WHILE BACKEND MANAGES THE FUNCTIONALITY.

HOW DO WEBSITES WORK?
WHEN WE WANT TO ACCESS ANY INFORMATION ON THE INTERNET, WE SEARCH FOR IT USING A WEB
BROWSER. THE WEB BROWSER RETRIEVES THE CONTENT FROM WEB SERVERS, WHERE IT IS STORED IN
THE FORM OF HTML DOCUMENTS.

AN HTML DOCUMENT IS CREATED BY WRITING CODE WITH SPECIFIC TAGS IN A CODE
EDITOR OF YOUR CHOICE. THE DOCUMENT IS THEN SAVED WITH THE '.HTML' EXTENSION.
ONCE SAVED, THE BROWSER INTERPRETS THE HTML DOCUMENT, READS IT, AND RENDERS
THE WEB PAGE.

WHAT IS A WEB BROWSER?

A WEB BROWSER IS A PROGRAM THAT UNDERSTANDS HTML TAGS AND RENDERS THEM IN
A HUMAN-READABLE FORMAT THAT IS EASILY VIEWABLE BY PEOPLE VISITING THE WEBSITE.
DEVELOPERS WRITE CODE IN HTML BECAUSE IT'S A STRAIGHTFORWARD WAY TO INSTRUCT
THE WEB BROWSER ON WHAT TO DISPLAY. IN THE NEXT SECTION, I'LL SHOW YOU HOW TO
SET UP VS CODE FOR WRITING YOUR OWN HTML CODE AND RENDERING IT IN A WEB
BROWSER.

AN HTML DOCUMENT IS A TEXT DOCUMENT SAVED WITH THE '.HTML' OR '.HTM' EXTENSION,
CONTAINING TEXT AND SPECIFIC TAGS ENCLOSED IN '< >'. THESE TAGS PROVIDE THE
NECESSARY INSTRUCTIONS FOR CONFIGURING THE WEB PAGE. THE TAGS THEMSELVES ARE
STANDARDIZED AND FIXED. THE STRUCTURE OF AN HTML DOCUMENT WILL BE EXPLAINED LATER
IN THIS HTML TUTORIAL.

WHAT IS AN HTML DOCUMENT?

WHAT IS A RENDERED PAGE:
THE RENDERED PAGE IS THE OUTPUT SCREEN OF OUR HTML DOCUMENT WHICH IS THE
PAGE DISPLAYED ON THE BROWSER.

WEB BROWSER(CLIENT) REQUESTS WEBSITES LIKE WWWXYZ.COM FROM THE WEB SERVER.
WEB SERVER IN RETURN SENDS HTML, CSS, AND JAVASCRIPT FILES TO IT.
HTML, CSS, AND JAVASCRIPT FILES ARE PARSED BY A WEB BROWSER WHICH IS
RESPONSIBLE FOR SHOWING YOU A BEAUTIFUL WEBSITE.

HOW DOES A BASIC WEBSITE WORK?

HOW DOES A BROWSER WORK?
A WEB BROWSER PLAYS A CRUCIAL ROLE IN PARSING AND RENDERING HTML CODE TO THE
CLIENT. A WEB BROWSER IS A COMPLEX PROGRAM THAT PERFORMS MANY TASKS BEHIND
THE SCENES. HERE'S A SUMMARY OF HOW IT WORKS:

A BROWSER IS AN APPLICATION THAT READS HTML DOCUMENTS AND DISPLAYS THEM
AS WEB PAGES. BROWSERS CAN'T ACCESS THE CONTENT DIRECTLY FROM WHERE IT'S
STORED; THIS IS WHERE SERVERS COME INTO PLAY.

A SERVER ACTS AS AN INTERMEDIARY, LISTENING TO BROWSER REQUESTS AND
FULFILLING THEM BY DELIVERING THE HTML DOCUMENT TO THE BROWSER.

WEB BROWSERS PERFORM TWO MAIN TASKS: PARSING AND RENDERING.

DURING THE PARSING STAGE, THE BROWSER RECEIVES RAW BYTES, WHICH ARE
CONVERTED INTO CHARACTERS. THESE CHARACTERS ARE THEN CONVERTED INTO
TOKENS, WHICH IN TURN ARE TRANSFORMED INTO NODES. THESE NODES ARE
ORGANIZED INTO A TREE-LIKE DATA STRUCTURE KNOWN AS THE DOM (DOCUMENT
OBJECT MODEL).

ONCE THE DOM TREE IS CONSTRUCTED, THE BROWSER MOVES ON TO THE RENDERING
STAGE. AT THIS POINT, EACH NODE IN THE DOM TREE IS RENDERED AND DISPLAYED ON
THE SCREEN.

DONT WORRY ABOUT HOW BROWSER EXACTLY WORKS JUST YET. RATHER FOCUS ON LEARNING HTML.
IN THE NEXT TUOTRIAL WE WILL INSTALL VS CODE AND SOME EXTENSIONS FOR WRITING OUR HTML
CODE.

HTML INSTALLATION
LET'S GET OUR HANDS DIRTY AND START PREPARING TO WRITE SOME CODE. IN THIS TUTORIAL, WE
WILL INSTALL VS CODE AND SOME RELATED EXTENSIONS FOR FASTER AND MORE EFFICIENT HTML
DEVELOPMENT.

WHAT ARE THE PREREQUISITES TO LEARNING HTML?
I CAN SAFELY SAY THAT THERE ARE NO PREREQUISITES TO LEARNING HTML. HTML IS THE
LANGUAGE OF THE WEB AND IS OFTEN THE FIRST STEP THAT WEB DEVELOPERS TAKE IN LEARNING
TO CODE.

TOOLS NEEDED TO MAKE AN HTML PAGE:

1) HTML EDITOR: IT'S A STRAIGHTFORWARD TOOL WHERE EVERY PIECE OF HTML CONTENT MUST BE WRITTEN.
YOU CAN USE ANY TEXT EDITOR OF YOUR CHOICE. IN THIS TUTORIAL, WE'RE USING VISUAL STUDIO CODE
BECAUSE IT'S LIGHTWEIGHT AND OPEN-SOURCE.
POPULAR EDITORS FOR HTML DEVELOPMENT INCLUDE TEXT EDITORS LIKE NOTEPAD++ AND TEXTEDIT, CODE
EDITORS SUCH AS SUBLIME TEXT AND VISUAL STUDIO CODE, AND FULL-FLEDGED IDES LIKE WEBSTORM AND
ECLIPSE. ONLINE PLATFORMS LIKE CODEPEN AND JSFIDDLE ARE ALSO COMMONLY USED FOR QUICK HTML
EDITING AND TESTING.

https://notepad-plus-plus.org/
https://support.apple.com/en-in/guide/textedit/welcome/mac
https://www.sublimetext.com/
https://code.visualstudio.com/
https://www.jetbrains.com/webstorm/
https://www.eclipse.org/downloads/
https://codepen.io/
https://jsfiddle.net/

2) BROWSER: HTML TAGS ARE NOT DISPLAYED BY BROWSERS; INSTEAD, THEY ARE READ AND
INTERPRETED TO RENDER THE WEB PAGE. IN A WEB BROWSER, HTML STRUCTURES ARE DISPLAYED
IN A STYLED AND VISUALLY APPEALING FORM. IN THIS TUTORIAL, WE ARE USING GOOGLE
CHROME. OTHER COMMONLY USED BROWSERS INCLUDE CHROMIUM, FIREFOX, SAFARI ON MAC,
AND MICROSOFT EDGE.

NOTE: YOU CAN WRITE HTML EVEN IN A NOTEPAD. TEXT EDITORS LIKE VS CODE MAKE THESE THINGS EASIER.

INSTALLATION & SETUP OF VISUAL STUDIO CODE FOR HTML:
WE WILL INSTALL AND SET UP HTML TO OPTIMIZE ITS UTILITY FOR CREATING WEB PAGES.
ADDITIONALLY, WE'LL INSTALL EXTENSIONS IN VISUAL STUDIO CODE TO ENHANCE ITS
FUNCTIONALITY. IF YOU'RE UNSURE ABOUT WHICH EDITOR TO USE, YOU CAN CONFIDENTLY START
WITH VISUAL STUDIO CODE. YOU WON'T REGRET IT; IT'S ONE OF THE BEST FREE CODE EDITORS
AVAILABLE IN THE MARKET.

SEARCH FOR "VISUAL STUDIO CODE DOWNLOAD" ON GOOGLE
DOWNLOAD VISUAL STUDIO CODE FOR YOUR OPERATING SYSTEM. I AM USING WINDOWS SO
I WILL INSTALL IT FOR WINDOWS

https://code.visualstudio.com/download

HTML Execution
Your Journey to Creating Your First Website Begins Here!
Let's mark this as an important milestone: the creation of your first website!
And what's a better way to start than with the traditional "Hello, World!"?

Why "Hello, World!"?
In the programming world, "Hello, World!" is more than just a phrase. It's a
tradition, an emotion, a simple program that teaches you the syntax and
gets you started. And guess what? HTML is no different!
Our first website will display the text 'Hello World'

Let's Get Started: Setting Up Your VS Code

If you haven't already set up your environment, let's begin by opening Visual
Studio Code (VS Code).

Creating a New File
Click on "Open Folder" and open a folder somewhere on your computer. I
am opening a folder named html-tutorial
Once VS Code is open, you'll want to create a new file:

Click on the "New File" icon in VS Code.1.
Type the filename as "index.html" and hit Enter.2.

Pasting the Code
Now that your file is ready, copy the following code and paste it into your
"index.html" file.

https://code.visualstudio.com/download
https://code.visualstudio.com/download

Going Live using the "live server" extension
To see your webpage in action, locate the "Go Live" icon at the bottom-right corner of your VS Code
window and click it. If you don't see this icon, you probably haven't installed the Live Server
extension, which we discussed in a previous tutorial.

Your First Website is Live!
Congratulations! If you've followed along, you should now see your very first website
displaying the classic "Hello, World!" message.

Live Preview Extension
Another useful extension for working with HTML in VS Code is 'HTML Preview.' To install
it, simply click on the extensions icon in VS Code and type 'HTML Preview' in the
search bar. Install it!

Now, you will see a button within VS Code. Clicking on this button will allow you to
preview your HTML right within the editor.

Once you click the button, you'll see a live preview of your HTML directly within VS
Code.

ou don't even need a browser to render plain HTML. This live preview feature in VS
Code is perfect for this HTML tutorial, allowing you to build and preview your entire
HTML website without ever leaving the editor.

HTML Page Structure
An HTML document is structured using a set of nested tags. Each tag is enclosed within <…>
angle brackets and acts as a container for content or other HTML tags. Let's take a look at a basic
HTML document structure:

This is how the title appears on an HTML page:

Note: These are the essential elements for a basic HTML document: <!DOCTYPE html>, <html>, <head>, <title>,
</head>, <body>, </body>, </html>

Almost every website uses this structure. The main content goes inside the body tag. No worries
if this looks complicated; let's break it down!

DOCTYPE Declaration

The <!DOCTYPE html> declaration informs the web browser about the HTML version being used. The latest version is
HTML5. But if this changes in the future (maybe 10 years down the line), the doctype declaration will be helpful!

HTML Root Element

The <html> tag is the root element that encapsulates all the content on the page.

The </html> tag marks the end of the <html> section.

Head Section

The <head> tag contains metadata and links to external resources like CSS and JavaScript files.

The </head> tag marks the end of the <head> section.

Title Tag

The <title> tag sets the title of the web page, which is displayed in the browser's title bar or tab.

Body Tag

The <body> tag contains the visible content of the web page. This is where text, images, and other elements go.

The </body> tag marks the end of the visible content of the web page.

Every HTML page should include at least these essential elements to define the basic layout. In upcoming tutorials, we'll dive
deeper into the fascinating world of HTML.

Summary
The <!DOCTYPE html> tag specifies that the document is an HTML5 document.
The <html lang="en"> tag defines the document to be in English.
The <head> section contains metadata and the title of the webpage, which appears in the browser's title bar.
The <body> section contains the content that will be displayed on the webpage.
The h1 and p are two types of tags. We will learn about more tags in the later section

Visualization of an HTML Document:
The following image provides a visual representation of the HTML structure:

How This Content Appears in a Web Browser:

Below is an image showing how this HTML document will be rendered in a web browser:

In the browser, the title bar will display the content from the <head> section, specifically the <title> tag. The main area of the
browser window (usually a white background) will display the content inside the <body> tag.
In the upcoming sections, we will learn about html tags and elements.

HTML Tags
If you want to build a beautiful website, tags are essential elements that help you achieve that.
An HTML tag acts as a container for content or other HTML tags. Tags are words enclosed within < and > angle brackets.
They serve as keywords that instruct the web browser on how to format and display the content.

Commonly used tags in HTML
Here are some commonly used tags in HTML. These are the only tags used 70% of the time

Document Structure Tags
<!DOCTYPE html>: Specifies the document type.1.
<html>: Encloses the entire HTML document.2.
<head>: Contains meta-information and links to scripts and stylesheets.3.
<body>: Contains the content of the web page.4.

Metadata Tags

<title>: Sets the title of the web page.1.
<meta>: Provides metadata such as character set, author, and viewport settings.2.
<link>: Links external resources like stylesheets.3.

Text Formatting Tags
<p>: Paragraph.1.
<h1>, <h2>, <h3>, <h4>, <h5>, <h6>: Headings.2.
: Strong emphasis (typically bold).3.
: Emphasis (typically italic).4.

: Line break.5.
<hr>: Horizontal rule.6.

List Tags
: Unordered list.1.
: Ordered list.2.
: List item.3.

Hyperlink and Media Tags

<a>: Anchor (used for links).1.
: Image.2.
<audio>: Audio content.3.
<video>: Video content.4.

Form Tags
<form>: Form.1.
<input>: Input field.2.
<textarea>: Text area.3.
<button>: Button.4.
<select>: Dropdown list.5.
<option>: Options within a <select> or <datalist>.6.

Table Tags
<table>: Table.1.
<tr>: Table row.2.
<td>: Table data cell.3.
<th>: Table header cell.4.
<thead>: Table header group.5.
<tbody>: Table body group.6.
<tfoot>: Table footer group.7.

Semantic Tag
<header>: Header section.1.
<footer>: Footer section.2.
<article>: Article.3.
<section>: Section.4.
<nav>: Navigation.5.
<aside>: Sidebar content.6.

Paired and Unpaired HTML Tags
Well, that was a really long list. Don't worry we will study these in detail. In HTML, tags can be broadly categorized into two
types:

1. Paired Tags (Container Tags)
These are tags that come in pairs, consisting of an opening tag and a corresponding closing tag. The content goes
between these two tags.

Opening Tag: The opening tag starts with < and ends with >. For example, <p>.
Closing Tag: The closing tag also starts with < but includes a forward slash / before the tag name, and ends with >.
For example, </p>.

Examples:

Paragraphs: <p>This is a paragraph.</p>
Headings: <h1>This is a heading.</h1>

2. Unpaired Tags (Self-Closing Tags or Stand-Alone Tags)

These are tags that don't require a closing tag. They are self-contained, encapsulating all the information
within a single tag.

Self-Closing Tag: A self-closing tag starts with < and ends with /> (though the / is optional in HTML5). For example, or
.
Note: Later if you happen to use react or a framework like Next.js, you will have to close the tag like this
 <hr/>. So it is better
to cultivate the habit!

Examples of self-closing tags:

Line Break:

Horizontal Rule: <hr/>
Image:

Pictorial Representation of Tags

The image below offers a visual representation of how tags are structured in HTML. As you can see, an element can contain other
elements, which may also contain additional elements, forming a tree-like structure. This hierarchy can include self-closing tags as
well as nested tags, as illustrated in the picture

HTML Elements
Beginners often get confused between HTML elements, nested elements, and tags. Let's clarify the
difference by understanding each one step-by-step.

What is an HTML Element?
An HTML element is a complete set that consists of a start tag (or opening tag), content, and an end tag
(or closing tag).
HTML Element = Start Tag + Content + End Tag
For example:

A nested HTML element is an HTML structure where one element is placed inside another element.
The enclosing element is often referred to as the "parent," while the enclosed element is called the
"child."

Nested HTML Element = One HTML Element Inside Another HTML Element

In this example, <h1> is the start tag, "This is our first heading" is the content, and </h1> is the end tag.
Together, they form an HTML element.

What is a Nested HTML Element?

In this example, the element (child) is nested inside the <h1> element (parent).

What is an Empty HTML Element?
An empty HTML element is one that does not have a closing tag or content. These elements are also
known as "void elements" or "self-closing elements."
Empty HTML Element = Tags with No Content

This is a break tag, which has no content and no closing tag. It's used to insert a line break within text or other inline
elements. The <hr /> tag, used for horizontal rules, is another example of an empty or void element.

HTML Tags vs. Elements
HTML Tags
HTML tags are the markers that define the start and end of an element. They are wrapped in angle brackets, like
<p> and </p>.

HTML Elements
An HTML element includes an opening tag, content, and a closing tag, forming a complete set. For example,
<p>This is a paragraph.</p>.

Key Takeaways
Tags set boundaries; elements include tags plus content.
Tags come in pairs (most of the time), whereas elements may include nested elements.
Self-closing or void elements like
 are still considered elements, even though they don't have a closing
tag or content.
Elements can be "parent" or "child" when nested, but tags cannot.

HTML Attributes

Types of HTML Attributes

HTML attributes are used to define the characteristics of an HTML element. They are placed within
the element's opening tag and consist of two parts: the name and the value.

Name: Specifies the property for that element.
Value: Sets the value of that property for the element.

Core Attributes: These are basic attributes that can be applied to most HTML elements. Examples include id,
class, and style.
Internationalization Attributes: These attributes help adapt the document to different languages and
regions. Examples include lang and dir.
Generic Attributes: These attributes provide additional information about the element but don't necessarily
affect its appearance or behavior. Examples include data-* attributes for storing custom data private to the
page or application.

There are three main types of HTML attributes:

Core attributes are some of the most widely used attributes in HTML. There are four main types:
id
class
title
style

In this example, the ID attribute helps to distinguish between two paragraphs by having different values: "html" and "python".

ID Attribute
The ID attribute is used to assign a unique identifier to an HTML element. Each element with an ID has its own
unique identity, similar to how each individual has a unique identity. Multiple elements cannot have the same ID.
Example:

Class Attribute
The class attribute is used to associate an HTML element with a particular class, typically for styling or JavaScript manipulation. Unlike the ID attribute, the class
attribute is not unique, and multiple elements can share the same class.

The title attribute provides additional information about an element and is often displayed as a tooltip when the mouse hovers over it.

Title Attribute

Style Attribute
The style attribute allows for inline styling of HTML elements. It is used in conjunction with CSS properties
to directly style individual elements within the HTML code.

Case Sensitivity
The HTML standard is flexible about the case of attribute names, allowing them to be written in either uppercase or lowercase,
such as "title" or "TITLE." However, for best practices and compatibility with stricter document types like XHTML, the W3C
recommends using lowercase attributes.

Comments are ignored by web browsers.
They aid in code readability and documentation.
HTML comments are denoted by <!-- content -->.
The shortcut key for commenting out code is Ctrl + /.
HTML supports both single-line and multi-line comments.

HTML Comments
Comments in HTML are like little notes you leave in your code for yourself or other people. These notes help make the code easier
to understand but don't show up on the actual website. The web browser just skips over them!

HTML primarily supports two types of comments:

Types of Comments in HTML

Single-line Comments
Single-line comments are contained within one line. They are useful for short
annotations.

Example:

Key Points About HTML Comments

Multi-line comments span across multiple lines, making them ideal for detailed explanations or temporarily disabling
blocks of code.

Multi-line Comments

The class attribute lets you give the same name to multiple HTML elements. That way, you can easily change their look
or behavior all at once. Classes are not unique and can be assigned to multiple elements. They are generally used for
applying the same styles or behaviors to a group of elements.

HTML Id & Classes
Multi-line comments span across multiple lines, making them ideal for detailed explanations or temporarily disabling
blocks of code.

What is an ID?
An ID is an attribute, a unique identifier assigned to only one HTML element within a page. It is often used for unique styling
and JavaScript manipulations.

What are Classes?

The Style Tag
The style tag in HTML is used to include embedded CSS (Cascading Style Sheets) within an HTML document. It is
commonly placed within the <head> section of the HTML file, although it can technically be used in the <body> as well.
The style tag allows you to define the look and feel of various HTML elements on the page, including their colors, sizes,
margins, and other visual styles.

Here's a simple example:

In this example, we have targetted the second paragraph by its class name in CSS. The style tag is used to add CSS
right into HTML. We will learn about CSS and selectors later in the CSS tutorial

Using IDs and Classes in CSS
In CSS, elements with IDs are selected using a hash (#) symbol before the ID, and elements with classes are selected
using a dot (.) before the class name.

Differences Between IDs and Classes
Uniqueness: IDs are unique, and classes can be reused.
JavaScript: IDs are often used for JavaScript operations.
Styling: Both can be used for styling, but IDs have higher specificity.

Conclusion
Understanding the difference between IDs and Classes is crucial for effective web development. While IDs are for
unique elements, classes are for grouping elements.

HTML BASIC TAGS
Skeletal Tags
Let's discuss some basic HTML tags known as "skeletal tags".

<html> Tag: "Root of an HTML Page"
Syntax:

The <html> tag is the root element that wraps all the content on the page. It generally contains two main sections: the header (<head>...</head>) and
the body (<body>...</body>).

<head> Tag: "Header Part of an HTML Page"
Syntax:

The <head> tag contains meta information and the title of the document. While the title appears in the browser tab, meta information is often used for
SEO purposes.

<title> Tag: "Title Part of an HTML Page"
Syntax:

<body> Tag: "Body Part of an HTML Page"
Syntax:

The <body> tag encloses the main content of the page, and everything within this tag is displayed in the browser.

The image below shows the skeletal tags and essential tags needed to define the layout of a webpage:

Heading Tags
In HTML, heading tags ranging from <h1> to <h6> are used to define the structure and layout of text on a web page. These
tags help create a hierarchical organization of content, making it easier for both users and search engines to understand
the page's content.
The <h1> tag is generally used for the main title and is the largest and most prominent, while <h2> to <h6> tags are used
for subheadings, further subheadings and so on... Proper use of heading tags not only improves the readability of a web
page but also optimizes it for search engine ranking in Google

<h1> Tag: First-Level Heading
The <h1> tag defines the first-level heading and is typically the largest and boldest among all the heading tags. It is
often used for the main title of the page.

<h2> Tag: Second-Level Heading
The <h2> tag is used for second-level headings and is slightly smaller than the <h1> tag. This is commonly used for
section titles.

https://www.searchenginejournal.com/heading-tags-for-seo/341817/

<h3> Tag: Third-Level Heading
The <h3> tag is used for third-level headings. These are smaller than <h2> tags and are often used for sub-sections
within an <h2> section.

<h4> Tag: Fourth-Level Heading
The <h4> tag defines a fourth-level heading, which is smaller than the <h3> tag. It's often used for sub-sections
within an <h3> section.

<h5> Tag: Fifth-Level Heading
The <h5> tag is used for fifth-level headings and is smaller than <h4> tags. These are rarely used but can be helpful
for deeply nested sections.

<h6> Tag: Sixth-Level Heading
The <h6> tag defines the sixth-level heading and is the smallest among all the heading tags. It's rarely used but
can serve specific formatting needs.

Summary
<h1> Tag: Used for the main title of the page; largest and most prominent heading.
<h2> Tag: Used for major section headings; smaller than <h1> but still quite prominent.
<h3> Tag: Used for sub-sections within an <h2> section; smaller than <h2> but larger than <h4>.
<h4> Tag: Often used for headings within an <h3> section; useful for further breaking down content.
<h5> Tag: Rarely used; suitable for deeply nested sections or less important headings.
<h6> Tag: The smallest heading tag; used for very specific or minor headings, rarely seen in general usage.

Paragraph Tag
To create well-structured text in your HTML document, the <p> tag is essential for defining paragraphs.

<p> Tag: Defining a Paragraph in HTML
The <p> tag is used to format text into distinct paragraphs. Each paragraph element is separated by automatic
empty line spaces above and below the content, providing a clear visual separation. The tag must be closed with
its corresponding </p> tag.

Attributes and Styling
While the <p> tag is straightforward, you can enhance its functionality using various attributes like class or id for
CSS styling. You can also include inline styles using the style attribute.

Best Practices
It's advisable to use the <p> tag for textual content and not for layout control. For layout purposes, consider using
HTML5 semantic tags like <section>, <article>, or CSS techniques.

Horizontal Line Tag
To add a horizontal line in your HTML document, the <hr> tag comes in handy.

How to use the <hr> tag?
The syntax of the hr tag looks something like this.

The <hr> tag is an empty or self-closing tag, meaning it doesn't require a closing tag. It
serves as a visual separator, dividing different sections of your document with a horizontal
line.

Line Break Tag
To insert a line break in your HTML document, you can utilize the
 tag.

 tag is used to insert line breaks in text or paragraphs
The syntax for the
 tag looks like this:

The
 tag is commonly referred to as an empty or self-closing tag, meaning it doesn't require a
closing tag. This tag is responsible for breaking text lines or separating paragraphs. When
implemented, it automatically moves the text following the tag to the next line.
It's particularly useful in formatting textual content where line breaks are essential for readability or
visual layout. For instance, it can be used in addresses, poems, or song lyrics to preserve the
original line structure.

Anchor Tag
Links are fundamental to navigating the web. In HTML, links are created using the <a> tag, also
known as the Anchor tag.

Key Characteristics of HTML Links
Specified by the <a> tag.
Also known as hyperlinks.
Used to link one document to another.
Includes a closing tag .

Syntax of HTML Links

Essential Attributes of the Anchor Tag
HTML links primarily use two attributes:

href attribute: Defines the URL the link points to.
target attribute: Specifies where to open the linked document.

Target Attribute Values
_blank: Opens the linked document in a new window or tab.
_top: Opens document in the full body of the window.
_self: Opens document in the same window or tab (default behavior).
_parent: Opens the linked document in the parent frame.

Linking to Specific Page Sections
To link to a specific section of a webpage, you can:

Use the name or id attribute of the target section.
Use a hyperlink with a hash (#) followed by the target id or name.

Example
Let's say you have a long webpage with multiple sections, and you want to create a link at the top that,
when clicked, takes the user directly to a specific section further down the page. You can do this using
HTML links that target specific sections.

Link Colors
Links typically appear in different colors based on their state:

Active: Displayed in red and underlined like this sentence
Visited: Appears purple and underlined like this sentence
Unvisited: Shown as blue and underlined like this sentence

You can customize these colors using CSS to better match the style of your website.

It's a self-closing tag, meaning it doesn't require a corresponding closing tag.
Commonly used attributes include the "alt" attribute for image descriptions and the "src" attribute for
specifying the image location.
Supports various image formats including PNG, JPEG, JPG, and GIF.

Image Tag
Images play a crucial role in enhancing web pages by providing a visual context that complements
textual content. In HTML, the tag is used to embed images into web pages.

Basic Syntax for Embedding Images
This is how the syntax to embed an image in html looks like:

Key Features of the Tag

Setting Mandatory Attributes
The "src" and "alt" attributes are essential for the proper functioning of the tag.
src attribute: Specifies the path to the image file.
alt attribute: Provides a text description for the image.

Note: To find the image's location, right-click on the image, go to properties, and check the location field.

Setting Image Dimensions
Although dimensions can be set using the "width" and "height" attributes in the tag, modern best
practices recommend using CSS for this purpose.

Setting the width and height attributes for images in HTML can have a positive impact on Search Engine
Optimization (SEO). Specifying these dimensions in the tag allows browsers to allocate the correct
amount of space on a web page even before the image is fully loaded. This prevents layout shifts, improving
the Cumulative Layout Shift (CLS) score—a key metric in Google's Core Web Vitals. A better CLS score can
lead to a higher page ranking in search engine results.

Note: Styling dimensions and other properties are now more commonly managed through CSS for better
flexibility and maintainability.

https://searchengineland.com/guide/what-is-seo
https://searchengineland.com/guide/what-is-seo
https://web.dev/cls/

Pre Tag
The <pre> tag serves as an indispensable tool in HTML for displaying preformatted text, such as code
snippets in various programming languages.

What Does the <pre> Tag Do?
The <pre> tag preserves the original formatting of text, making it an excellent choice for displaying code
where spacing and indentation are key.

Key Features
The <pre> tag maintains both spaces and line breaks, ensuring that text appears exactly as it was originally
formatted.
The <pre> tag has both an opening tag <pre> and a closing tag </pre>.
Additional attributes can also be added for further customization.

When to Use the <pre> Tag?
The <pre> tag is most effective when you want the text to display on your HTML page exactly as it was typed, without
any formatting changes. It is especially useful for displaying code snippets or preformatted text from data files.

Displaying a Simple Python Program and Its Output
In this section, we will use HTML to display a simple Python program that prints 'Hello, World!' to the console. Don't
worry, you don't need to know Python; we're just showing how to display the program using the HTML <pre> tag.

Python Program

INLINE & BLOCK ELEMENTS
HTML In line Elements
Inline Elements don't start on a new line. It only takes the width required to cover the content. HTML elements are generally
divided into two categories: Block-level and Inline elements.

Block- Level Element

INLINE ELEMENTS:

No matter what the width is, block elements will always start on a new line and take up the full available width of their container by
default. This means they essentially claim all the horizontal space for themselves, pushing any content that comes after them to a
new line. But the inline elements will fit snugly within the flow of other elements, taking up only as much width as their content
requires.

What are Inline Elements?
Inline elements do not start on a new line and only take up as much width as necessary. They are part of the flow within other elements.
Inline elements can contain other inline elements, but they generally should not contain block-level elements. For example, you could nest
a (strong emphasis) element within a (a generic inline container) element, like so:

However, placing a block-level element like a <div> or <p> inside an inline element like or <a> is typically considered incorrect HTML
and could lead to unexpected behavior in terms of layout and styling.

Common Inline Elements
: A generic inline container for text
<a>: Defines a hyperlink
: Defines important text
: Defines emphasized text
: Embeds an image
<input>: Defines an input control

Examples
Here is an example of using inline elements within a paragraph.
This text contains a link, an important text, and an emphasized text.

Styling Inline Elements
You can use CSS to style inline elements. However, some properties like width and height may not apply.
Here is an exhaustive list of the most used Inline Elements:

<a>
<abbr>
<acronym>
<button>

<big>
<bdo>

<cite>
<code>
<dfn>
<i>

https://www.codewithharry.com/tutorial/html-inline-elements/#

<input>
<kbd>
<label>
<map>
<object>
<output>
<tt>
<time>
<samp>
<script>
<select>
<small>

<sub>
<sup>
<textarea>

HTML Block Elements
You already know about HTML inline elements. All HTML tags have specific display behavior: they are either block-level
elements or inline elements.

What are Block-level Elements?
Block-level elements are those that start on a new line and take up the entire width of their container by default. They
essentially claim all the horizontal space for themselves, pushing any content that comes after them to a new line.

Characteristics of Block-level Elements:
Always start on a new line.
Take up the full width available.
Width and height can be controlled via CSS.
Can contain other block-level as well as inline elements.

Common Block-level Elements:
<h1>,<h2>,<h3>,<h4>,<h5>,<h6> - Headings
<p> - Paragraphs
<hr> - Horizontal rule
<address> - Address information
<article> - Article content
<aside> - Sidebar content
<blockquote> - Block quotations
<canvas> - Drawing area
<dd> - Description in a description list

<div> - Generic container
<dl> - Description list
<dt> - Term in a description list
<fieldset> - Group of related form elements
<figcaption> - Caption for a figure
<figure> - Image or media with a caption
<footer> - Footer of a section or page
<form> - HTML form
<header> - Header of a section or page
 - List item
<main> - Main content of a document
<nav> - Navigation links
<noscript> - Alternate content when JavaScript is
not enabled
 - Ordered list
 - Unordered list
<pre> - Preformatted text
<section> - Standalone section in a document
<table> - Table
<video> - Video content

HTML LISTS
HTML Lists
Our day-to-day lives often involve the use of lists. For example, when we go shopping, the bill we receive includes a
list of all the items we've purchased. In a similar manner, web developers use lists to neatly display data on websites.

Types of HTML Lists
HTML provides different types of lists to display data in various forms. Each list contains one or more list items.

Unordered List: Displays items using bullets.
Ordered List: Displays items in a numerical sequence, and supports various numbering styles like Arabic numerals,
Roman numerals, and so on.
Definition List: Organizes items in a format similar to a dictionary, with terms and their corresponding definitions.

An Unordered List
An unordered list uses bullets to display items. It is suitable for listing items where the order doesn't matter. We will
soon explore unordered lists in great detail

An Ordered List
An ordered list uses numbers or other types of markers to indicate the sequence of items. It's ideal for listing steps in a
process or ranking items in order of importance. We will soon explore ordered lists in great detail

A Definition List
A definition list arranges items in a way similar to a dictionary, with a term followed by its definition. This is useful for
glossaries or to display metadata.

HTML Unordered List
An unordered list is a list of items that are not arranged in any specific, sequential order. Unlike ordered lists, the items
in an unordered list are typically marked with bullet points, dashes, or other symbols to indicate list membership, but
these markers do not imply any particular order.

Syntax for Creating Unordered Lists

Key Characteristics of Unordered Lists
No specific sequence is required.
Typically displayed as bullet points.
Defined using the tag.
Individual items use the tag.

Basic Example

Output:
Pen
Pencil
Eraser

Customizing Bullet Points with 'type' Attribute
You can specify the style of bullet points using the type attribute. It supports three values:

disc - default bullet style
square
circle

Example Using Square Bullets:

Output:

HTML Ordered List
An ordered list is a list of items that are arranged in a specific, sequential order. Each item in the list is
usually numbered to indicate its position in the sequence. Ordered lists are commonly used when the
sequence of the items is important, such as in step-by-step instructions or rankings.

Syntax

Key Points
Ordered lists are used for items that follow a sequence.
They are created using the (Ordered List) tag.
List items are enclosed within (List Item) tags.

Basic Example

The type attribute specifies the style of numbering. You have several options:
Uppercase Roman Numerals: Use type="I"1.
Lowercase Roman Numerals: Use type="i"2.
Arabic Numerals: Use type="1" (This is the default if the type attribute is not specified)3.
Lowercase Alphabetical Letters: Use type="a"4.
Uppercase Alphabetical Letters: Use type="A"5.

Output:
Mango1.
Orange2.
Litchi3.

Setting the 'type' Attribute

Setting the 'start' Attribute
The start attribute specifies the starting number for the list.

Output:
Pen1.
Pencil2.

HTML Definition Lists
A Definition List in HTML is used to represent a list of terms along with their corresponding descriptions or definitions. The
Definition List is created using the <dl> (Definition List) element, which wraps around one or more pairs of <dt> (Definition
Term) and <dd> (Definition Description) elements.

Definition List Example
Here's a simple example to illustrate:

Understanding the example
In this example:

<dl> is the container for the list.
<dt> defines the terms that you want to explain.
<dd> contains the definitions or explanations for the terms.

HTML TABLES
HTML Tables
HTML tables allow you to arrange data like text, images, and links in rows and columns. You use the <table> tag to start
and end a table.

Syntax of HTML Table

<table>: Defines the table itself.
<tr>: Used for table rows.
<th>: Used for table headings.
<td>: Used for table cells (data).

Key Elements of HTML Table

Basic Table Structure

rowspan and colspan Attributes
Rowspan: If you want a table cell to span multiple rows, you can use the rowspan attribute.

Colspan: If you want a table cell to span multiple columns, you can use the colspan attribute.

Visual Representation of Rowspan and Colspan

Examples
Here are simple examples to demonstrate the use of rowspan and colspan in HTML tables.

Example for Colspan:

Example for Rowspan:

More on Tables
Let's take a closer look at HTML tables and delve into some more aspects of using tables in HTML.

Adding a Caption
To add a title to your table, you can use the <caption> element. This element helps both in terms of SEO and accessibility.

Table Headers and Footers
Besides <th> for individual header cells, HTML tables allow you to group header or footer content using <thead> and <tfoot>.

To make your tables more accessible, you can use the scope attribute in <th> elements to specify if they
are headers for columns, rows, or groups of columns or rows.

Column Groups
You can use the <colgroup> and <col> elements to apply styles to an entire column in an HTML table.

Accessibility in Tables

Sample HTML Table
Here is an example HTML table with all the important elements:

<table border="1">
 <!-- Caption -->
 <caption>Employee Information</caption>

 <!-- Table Header -->
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Position</th>
 <th>Salary</th>
 </tr>
 </thead>

 <!-- Table Body -->
 <tbody>
 <tr>
 <td>1</td>
 <td>Alice</td>
 <td>Developer</td>
 <td>$80,000</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Bob</td>
 <td>Designer</td>
 <td>$70,000</td>
 </tr>
 <tr>

 <td>3</td>
 <td>Carol</td>
 <td>Manager</td>
 <td>$90,000</td>
 </tr>
 </tbody>
 <!-- Table Footer -->
 <tfoot>
 <tr>
 <td colspan="3">Total Employees</td>
 <td>3</td>
 </tr>
 </tfoot>
</table>

Conclusion
We've covered some advanced topics related to HTML tables in this blog. By using these features, you can create tables that are
not only visually appealing but also highly functional and accessible. Stay tuned for more insights into HTML and web
development!

HTML FORMS
Introduction to HTML Forms
HTML forms are essential for collecting user input on web pages. Whether it's a search bar, a login screen, or a multi-field
registration form, HTML forms play a key role in web interactions. They enable users to submit data, which can be processed,
stored, or returned by a server.

Why Do We Use Forms?
Forms serve as the gateway between the user and the server, allowing for dynamic, interactive web experiences. They are crucial
for tasks such as user authentication, data submission, feedback collection, and more. Simply put, forms make websites more
engaging and functional.

HTML Forms Structure:
The fundamental structure of an HTML form is encapsulated within the <form> tags. Inside these tags, you'll place various form
controls like text fields, checkboxes, radio buttons, and buttons for submitting the form.

 <form action="/submit" method="post">
 <!-- Text input for username -->
 <label for="username">Username:</label>
 <input type="text" id="username" name="username" required>

 <!-- Password input -->
 <label for="password">Password:</label>
 <input type="password" id="password" name="password" required>

The <input> tag is commonly used to create form controls. The attributes of this tag define the control's behavior.

<!-- Radio buttons for gender -->
 <label>Gender:</label>
 <input type="radio" id="male" name="gender" value="male">
 <label for="male">Male</label>
 <input type="radio" id="female" name="gender" value="female">
 <label for="female">Female</label>

 <!-- Submit button -->
 <input type="submit" value="Submit">
 </form>

How to Use Form Controls?

The "type" attribute specifies the type of input control (e.g., text, password, checkbox).
The "name" attribute is used for identifying the control, especially when the data is sent to the server.
The "value" attribute sets a default value for the control, which the user can overwrite.

HTML Input Types
Input types in HTML forms are the backbone of interactive web applications. They allow users to send information to web servers for
various purposes like searching, logging in, or providing feedback. In this blog, we'll explore common HTML input types: text, password,
radio, and checkbox.

Text Input
The text input type is the most basic form of input and is widely used for collecting simple text data.

In the above example, the placeholder attribute provides a hint to the user about what to enter.

Password Input
The password input type is similar to the text type but hides the characters entered by the user for security
reasons.

Radio Buttons
Radio buttons are used when you want the user to select only one option from a set of choices.

Input Type Description

text Allows the user to type a single line of text.

password Allows the user to type a password.

submit Represents a button that, when pressed, submits the form.

reset Represents a button that, when pressed, resets all the form controls to their initial values.

radio Represents an option in a set of options that are mutually exclusive with each other.

checkbox Represents an option in a set that may be selected independently of other options.

Checkbox
Checkboxes allow the user to select multiple options from a set.

More input types
Here is a comprehensive list of input types you can use in html

button Represents a clickable button.

color Allows the user to select a color.

date Allows the user to select a date.

datetime-local Allows the user to select a date and time with no time zone.

email Allows the user to enter an email address.

file Allows the user to select one or more files from their device storage.

hidden Represents a value that is not displayed but is submitted to the server.

image Defines an image that acts as a submit button.

month Allows the user to select a month and year.

number Allows the user to enter a number.

range Allows the user to select a number from a range.

search Allows the user to enter a search query string.

tel Allows the user to enter a telephone number.

time Allows the user to select a time.

url Allows the user to enter a URL.

week Allows the user to select a week.

Conclusion
Understanding the different types of HTML input is crucial for creating interactive and user-
friendly forms. Each input type serves a specific purpose, making it easier to collect, validate, and
process user data.

Textarea & Select
In addition to the basic input types, HTML forms offer other controls like textarea and select for
richer user interaction. These elements allow for more complex data collection and provide a
better user experience. In this blog, we will dive into these form controls and provide examples.

The Textarea Element
The textarea element is used when you need multiline text input from the user. This is particularly
useful for comments, reviews, or any other type of input where the length is unpredictable.

The rows and cols attributes define the visible dimensions of the textarea.

The Select Element

Each option inside the select tag represents an item in the dropdown list.

Combining Textarea and Select
You can combine textarea and select in the same form to capture varied types of user input.

Conclusion
The textarea and select elements add another layer of interactivity to HTML forms, allowing for
more complex and useful data collection. Understanding how to use these elements effectively
can greatly enhance your web application's user interface.

More on forms
HTML forms are the backbone of interactive websites. They allow users to submit data, which can be processed on the
server. While we have covered basic input types in previous tutorials, this tutorial aims to delve deeper into form
attributes, both common and new HTML5 additions. We'll also look at HTML5 validation attributes to ensure data
integrity.

Common Attributes
action
The action attribute specifies the URL where the form data should be sent after submission.

The method attribute defines how data is sent. The two most common methods are
GET and POST.

method
The method attribute defines how data is sent. The two most common methods are GET and POST.

name
The name attribute specifies the name for the form element, making it easier to reference in scripts or
the server-side code.

New HTML5 Attributes
Placeholder
This attribute provides a hint to the user as to what can be entered in the field.

Required
The required attribute makes a field mandatory to fill out.

autofocus
The autofocus attribute automatically focuses the cursor on the particular input when the page
loads.

HTML5 Validation Attributes
required
As mentioned above, this attribute makes a field mandatory.

pattern
The pattern attribute specifies a regular expression that the input must match to be valid.

Conclusion
Understanding the different attributes available for HTML forms is crucial for building robust and
user-friendly web applications. This tutorial covered both commonly used and new HTML5-
specific attributes that enhance functionality and user interaction. Employing these attributes
effectively will greatly enhance your web forms.

The <code> tag is a semantic HTML tag that's used for displaying code snippets. It can be used
both inline and within a block-level element like <pre>.

Miscellaneous Tags
HTML Code Tag
The HTML <code> tag is a powerful element for displaying code snippets within a webpage. It
preserves both spaces and line breaks, making it ideal for showcasing code. In this blog post, we'll
explore how to use the <code> tag effectively, especially in conjunction with Prism for code
highlighting.

What is the <code> Tag?

Why Use the <code> Tag?
Semantic Meaning: Provides semantic value to the enclosed code.
Readability: This makes it easier for both browsers and developers to understand that the text is code.
Styling: Easier to style and highlight with CSS or JavaScript libraries like Prism.

Basic Usage
The most straightforward way to use the <code> tag is inline for short code snippets:

Using <code> with <pre>
For multiline code snippets, it's common to combine the <code> tag with the <pre> tag:

Conclusion
The HTML <code> tag is a simple yet powerful way to include code snippets in your webpage.

The HTML <code> tag is a simple yet powerful way to include code snippets in your webpage.

HTML Semantic Tags

What are Semantic Tags?
Semantic tags add meaning to your HTML. They tell both the browser and the developer what kind of
content is being presented.

Here are some of the key semantic tags you must know about:

<header>: Used to represent the top section of a web page, often containing headings, logos, and
navigation.
<nav>: Signifies a navigation menu on a web page.
<article>: Indicates a self-contained piece of content, such as a blog post or news article.
<section>: Represents a thematic grouping of content on a web page.
<aside>: Typically used for sidebars or content that is tangentially related to the main content.
<footer>: Represents the footer of a web page, usually containing copyright information and
contact details.
<figure> and <figcaption>: Used for embedding images, diagrams, or charts, along with a caption.
<main>: Signifies the main content area of a web page.
<time>: Used to represent time-related information, like dates and times.

Why Use Semantic Tags?
They enhance SEO, improve accessibility, and make your code easier to read and maintain.

Commonly Used Semantic Tags
Here are some commonly used semantic tags in HTML:

header: Contains introductory content.
footer: Holds footer information.
article: Encapsulates a self-contained composition.
section: Represents a standalone section.
aside: Contains content aside from the content it is placed in.
nav: Holds navigation links.

Examples
Using the <header> tags and <footer> tags

Using the <article> and <section> tags

Using the <aside> and <nav> tags

Using the <figure> and <figcaption> tags

Conclusion
Using HTML's semantic tags can greatly benefit both your website's SEO and the maintainability of
your code. They offer a way to structure your HTML in a meaningful manner, making your website
more accessible and easier to understand.

HTML Canvas
The <canvas> element in HTML is a powerful feature for rendering graphics and shapes directly within
web pages. Though it's often paired with JavaScript for dynamic rendering, the canvas itself is an
HTML element. In this blog, we'll explore what you can do with the <canvas> element alone.

What is Canvas?
The <canvas> element serves as a container for graphics, which can be rendered via scripting.
Essentially, it offers a drawing area for visual content.

Why Use Canvas?
Here are some reasons why you might use the <canvas> element:

Graphics: For drawing shapes, graphs, and other visual representations.
Dynamic Content: To dynamically update visual elements.
Interactivity: Though this involves JavaScript, the canvas element is the foundation for interactive
graphical content.

Basic Syntax
Here's how you can define a simple <canvas> element:

Attributes of Canvas
While the <canvas> element is simple, it does have a couple of important attributes:

width: Specifies the width of the canvas.
height: Specifies the height of the canvas.

Styling with CSS
You can also style the <canvas> element with CSS. For example, to add a border:

Conclusion
The HTML <canvas> element serves as a robust foundation for creating graphics and other visual
elements on a web page. Even without involving JavaScript, understanding the canvas element and
its basic attributes can be quite useful.

Attribute Description

accesskey Specifies a shortcut key to activate/focus an element

class Specifies one or more classes for an element

contenteditable Specifies whether the content is editable or not

HTML Global Attributes
HTML Global Attributes play a crucial role in HTML development, providing a consistent set of attributes that can be
applied to any HTML element. In this blog, we'll explore what these attributes are, their descriptions, and how to use
them effectively.

What Are HTML Global Attributes?
The global attributes are a set of attributes that can be used with all HTML elements, making them incredibly
versatile and essential for dynamic HTML coding.

List of Common Global Attributes

Using Global Attributes
Now, let's look at some examples that illustrate the usage of some of these global attributes.

Using the class Attribute

Using the id Attribute

Using the data-* Attribute for Custom Data

Conclusion
HTML Global Attributes offer a powerful and consistent way to control and manage HTML elements. Understanding
these attributes can significantly improve your HTML coding efficiency and the dynamism of the web pages you
create.

HTML Entities
HTML entities are a crucial part of HTML markup language. They enable you to display characters that are reserved
in HTML or that aren't readily available on the keyboard. In this blog, we'll explore what HTML entities are, their types,
and how to use them.

What Are HTML Entities?
HTML entities are used to represent special characters in a format that the browser can understand. They start with
an ampersand (&) and end with a semicolon (;).

Why Use HTML Entities?
Here are some reasons:

Reserved Characters: Characters like <, >, and & are reserved in HTML.
Special Symbols: For symbols like ©, ®, or mathematical symbols.
Non-Breaking Spaces: To create white spaces that won't break into a new line

Common HTML Entities

How to Use HTML Entities
Entities can be implemented easily within HTML code. Here are some examples:

Using Reserved Characters

Displaying Special Symbols

Creating Non-Breaking Spaces

Conclusion
HTML entities are essential for rendering special or reserved characters on a web page. Understanding how to use
them effectively is key to creating web pages that display content as intended.

Character Sets
Character sets are an essential concept in HTML, influencing how textual content is displayed and interpreted by
the browser. This blog aims to elucidate what character sets are, why they matter, and how to specify them in
HTML.

What is a Character Set?
A character set is a set of symbols and characters that a computer uses to represent text. In HTML, specifying the
correct character set ensures that text is displayed properly across different browsers and platforms.

Why is it Important?
Using the correct character set is crucial for:

Accurate Rendering: To ensure that browsers correctly display your text.
Multi-language Support: To display text in various languages and alphabets.
Data Integrity: To make sure the data sent and received remains consistent.

Specifying Character Set in HTML
The character set is generally specified using the <meta> tag within the <head> section of an HTML document

Common Character Sets
Here are some commonly used character sets:

UTF-8: Universal Character Set, 8-bit. It can represent any character in the Unicode standard.
ISO-8859-1: Western Alphabet.
ASCII: American Standard Code for Information Interchange.

Examples
Using UTF-8

Using ISO-8859-1

Conclusion
Understanding and specifying the correct character set is crucial for creating web pages that render text accurately across
different platforms and languages. UTF-8 is the most commonly used and recommended character set due to its wide
applicability and support.

