
POPULAR
SEARCH
ALGORITHMS

SKILRY



The games such as 3X3 eight-tile, 4X4 fifteen-tile, and
5X5 twenty four tile puzzles are singleagent-path-
finding challenges. They consist of a matrix of tiles with
a blank tile. The player is required to arrange the tiles by
sliding a tile either vertically or horizontally into a blank
space with the aim of accomplishing some objective.
The other examples of single agent pathfinding
problems are Travelling Salesman Problem, Rubik’s
Cube, and Theorem Proving.We delve into the realm of
single-agent pathfinding problems, a fundamental
concept in the field of artificial intelligence (AI).
Pathfinding involves finding the optimal route from a
starting point to a destination while navigating through
obstacles. Single agent pathfinding refers to scenarios
where there's only one agent traversing the
environment, which is a common scenario in many
real-world applications.

Single Agent PathfindingProblems



Search Terminology

Problem Space − It is the environment in which the search takes place. (A set of states and set of operators to
change those states)

Problem Instance − It is Initial state &plus Goal state.

Problem Space Graph − It represents problem state. States are shown by nodes and operators are shown by
edges.

Depth of a problem − Length of a shortest path or shortest sequence of operators from Initial State to goal
state.

Space Complexity − The maximum number of nodes that are stored in memory.

Admissibility − A property of an algorithm to always find an optimal solution.

Time Complexity − The maximum number of nodes that are created.

Branching Factor − The average number of child nodes in the problem space graph.

Depth − Length of the shortest path from initial state to goal state.



They are most simple, as they do not need any domain-specific knowledge.
They work fine with small number of possible states

Requirements –

State description

A set of valid operators

Initial state

Goal state description

Brute-Force Search Strategies



It starts from the root node, explores the neighboring nodes
first and moves towards the next level neighbors. It generates
one tree at a time until the solution is found. It can be
implemented using FIFO queue data structure. This method
provides shortest path to the solution.

If branching factor (average number of child nodes for a given
node) = b and depth = d, then number of nodes at level d = bd.

The total no of nodes created in worst case is b + b2 + b3 + … +
bd.

Disadvantage − Since each level of nodes is saved for creating
next one, it consumes a lot of memory space. Space
requirement to store nodes is exponential.

Its complexity depends on the number of nodes. It can check
duplicate nodes.

Breadth-First Search 



Mechanism of Breadth-First Search
In BFS, nodes are traversed level by level, starting from the initial state. The algorithm
expands all the neighboring nodes of the current state before moving on to the next
level. This process continues until the goal state is reached or all reachable nodes
have been explored.

Data Structures in Breadth-First Search
BFS typically utilizes a queue data structure to maintain the frontier of nodes to be
explored. Nodes are added to the queue as they are discovered, and they are
removed in a first-in-first-out (FIFO) fashion. Additionally, a set or hash table is often
used to keep track of visited nodes to prevent revisiting already explored states.

Completeness and Optimality of Breadth-First Search
BFS is both complete and optimal for finding the shortest path in a graph with
uniform edge costs. It guarantees that the shortest path to a goal state is found if one
exists. However, BFS may be impractical for large search spaces due to its memory
requirements and time complexity.



Applications of Breadth-First Search
BFS has widespread applications beyond pathfinding, including network traversal,
web crawling, and puzzle solving. In pathfinding scenarios, BFS is particularly useful
for finding the shortest path in unweighted graphs or when the goal is to explore all
reachable states within a certain radius.

Limitations and Considerations
While BFS guarantees optimality and completeness, it may not be suitable for certain
scenarios. In graphs with branching factors that grow exponentially, BFS may
consume significant memory and time resources. Additionally, BFS may not perform
well in scenarios where the cost of moving between states is not uniform.

Optimizations and Variants
Several optimizations and variants of BFS exist to address its limitations. Techniques
such as iterative deepening BFS, bidirectional BFS, and uniform-cost search modify
the basic BFS algorithm to improve efficiency or address specific requirements of the
problem domain.



It is implemented in recursion with LIFO stack data structure. It
creates the same set of nodes as Breadth-First method, only
in the different order.

As the nodes on the single path are stored in each iteration
from root to leaf node, the space requirement to store nodes is
linear. With branching factor b and depth as m, the storage
space is bm.

Disadvantage − This algorithm may not terminate and go on
infinitely on one path. The solution to this issue is to choose a
cut-off depth. If the ideal cut-off is d, and if chosen cut-off is
lesser than d, then this algorithm may fail. If chosen cut-off is
more than d, then execution time increases.

Its complexity depends on the number of paths. It cannot
check duplicate nodes.

Depth-First Search



Key Characteristics

Completeness: DFS is not guaranteed to find a solution if one exists, especially if the
graph is infinite or has cycles. However, it is complete in finite graphs.

Space Complexity: The space complexity of DFS is proportional to the depth of the
search tree. In the worst-case scenario, where the graph is a linear path, the space
complexity can be O(n), where n is the number of nodes.

Time Complexity: The time complexity of DFS is O(V + E), where V is the number of
vertices (nodes) and E is the number of edges in the graph.

Applications: DFS is commonly used in maze-solving, topological sorting, finding
connected components, and solving puzzles.



Advantages and Disadvantages

Advantages:

Simplicity: DFS is relatively easy to implement.
Memory Efficiency: It requires less memory compared to breadth-first search (BFS) as it
only stores nodes along the current path.
Space Efficiency: DFS typically requires less space compared to BFS, making it suitable for
large graphs.

Disadvantages:

Completeness: It may get stuck in infinite loops if the graph contains cycles, making it
incomplete for certain types of graphs.
Suboptimal Solutions: DFS does not necessarily find the shortest path between two nodes. It
may find a solution, but not the most optimal one.



It searches forward from initial state and backward from goal state till both meet to
identify a common state.
The path from initial state is concatenated with the inverse path from the goal state.
Each search is done only up to half of the total path.
Bidirectional Search is a pathfinding algorithm that operates by simultaneously
exploring the search space from both the start and goal nodes towards each other.
By conducting searches from both ends of the problem space, Bidirectional Search
aims to converge towards a common node, ultimately finding the shortest path
between the start and goal nodes more efficiently than traditional algorithms. This
approach is particularly beneficial in scenarios where the search space is large, and
the branching factor is high, as it reduces the overall search time by exploring from
both ends simultaneously. Bidirectional Search typically utilizes standard search
algorithms like Breadth-First Search or Depth-First Search, with the termination
condition being the intersection of paths from both directions. However, it requires
careful consideration of data structures and termination conditions to ensure
efficiency and completeness. Overall, Bidirectional Search offers a promising
approach to pathfinding, especially in situations where computational resources are
limited, and finding the shortest path quickly is paramount.

Bidirectional Search



Sorting is done in increasing cost of the path to a node. It always expands the least
cost node. It is identical to Breadth First search if each transition has the same cost.
It explores paths in the increasing order of cost.

Disadvantage − There can be multiple long paths with the cost ≤ C*. Uniform Cost
search must explore them all.

Uniform Cost Search

It performs depth-first search to level 1, starts over, executes a complete depth-first
search to level 2, and continues in such way till the solution is found.

It never creates a node until all lower nodes are generated. It only saves a stack of
nodes. The algorithm ends when it finds a solution at depth d. The number of nodes
created at depth d is bd and at depth d-1 is bd-1.

Iterative Deepening Depth-First Search 



Informed (Heuristic)SearchStrategies 

Informed search strategies, also known as heuristic search, utilize domain-specific
knowledge to guide the search process towards the goal more efficiently. Unlike uninformed
search algorithms, which lack knowledge about the problem domain, informed search
algorithms incorporate heuristic functions that estimate the cost or distance from the
current state to the goal. These heuristic functions provide valuable information to prioritize
the exploration of more promising paths, potentially leading to faster convergence and
optimal solutions. 
Popular examples of informed search algorithms include A* Search, Greedy Best-First
Search, and Iterative Deepening A* (IDA*). A* Search, in particular, combines the
advantages of both breadth-first and depth-first search by using a heuristic function to
evaluate the cost of reaching the goal from each node. While informed search strategies
generally require more computational resources to compute and store heuristic information,
they often outperform uninformed search algorithms, especially in large and complex
problem spaces. Understanding and implementing informed search strategies are essential
for efficiently solving pathfinding and optimization problems in various domains, including
robotics, logistics, and game AI.



Heuristic Evaluation Functions

Heuristic evaluation functions serve as informed estimates of the cost or distance to reach the
goal in pathfinding algorithms. These functions leverage domain-specific knowledge to guide
search algorithms towards the goal state efficiently. By estimating the remaining cost or
distance from a given state to the goal, heuristic evaluation functions enable informed
decision-making in algorithms like A* Search. The effectiveness of these functions heavily relies
on their accuracy in approximating the true cost, balancing between computational efficiency
and solution optimality.

Pure Heuristic Search 

It expands nodes in the order of their heuristic values. It creates two lists, a closed list for the
already expanded nodes and an open list for the created but unexpanded nodes. In each
iteration, a node with a minimum heuristic value is expanded, all its child nodes are created and
placed in the closed list. Then, the heuristic function is applied to the child nodes and they are
placed in the open list according to their heuristic value. The shorter paths are saved and the
longer ones are disposed. 



Local Search Algorithms 

They start from a prospective solution and then move to a neighboring solution.
They can return a valid solution even if it is interrupted at any time before they end. 

Local search algorithms are a class of optimization techniques that iteratively
explore the solution space by making incremental modifications to a current
solution, aiming to improve its quality. Unlike global search algorithms, which
explore the entire search space, local search algorithms focus on finding
satisfactory solutions within a limited neighborhood of the current solution.
Examples of local search algorithms include Hill Climbing, Simulated Annealing,
Genetic Algorithms, and Tabu Search. These algorithms are particularly effective
for optimization problems with large and complex solution spaces, where finding
an optimal solution is computationally expensive or impractical. Local search
algorithms trade-off between exploration and exploitation, often providing efficient
solutions for real-world optimization challenges across various domains, including
scheduling, routing, and machine learning.



Hill-Climbing Search 
Hill-Climbing Search is a local search algorithm used in optimization problems to iteratively
improve a solution by moving towards the best neighboring solution. The algorithm starts with
an initial solution and iteratively evaluates neighboring solutions, selecting the one that
maximally improves the objective function. This process continues until a local maximum is
reached, where no neighboring solution provides a better outcome.
One of the key characteristics of Hill-Climbing is its simplicity, making it easy to implement and
understand. It requires minimal memory overhead as it only maintains the current solution and
its neighbors. However, its simplicity comes with limitations. Hill-Climbing is prone to getting
stuck in local optima, where the best solution in the vicinity is not the global optimum.
Additionally, it does not provide any mechanism for escaping local optima, leading to the
possibility of premature convergence.
Despite its limitations, Hill-Climbing remains valuable in certain scenarios, especially when
computational resources are limited, and quick but suboptimal solutions are acceptable.
Variants of Hill-Climbing, such as Simulated Annealing and Genetic Algorithms, address some
of its shortcomings by introducing mechanisms for exploring the search space more effectively.
Understanding Hill-Climbing provides a foundational understanding of local search algorithms
and their applications in optimization problems.



Local Beam Search
Local Beam Search is a heuristic search algorithm used for solving optimization problems,
particularly in the context of pathfinding and combinatorial optimization. Unlike traditional
beam search, which explores a single path, local beam search maintains multiple states,
known as beams, at each iteration.
At the beginning of the search, it randomly generates a set of initial states, called the beam.
It then evaluates these states using a heuristic function and selects the top k states as
candidates for the next iteration. This process continues iteratively, with each iteration
potentially generating new states or refining existing ones.
One key feature of local beam search is its ability to maintain diversity among the beams,
allowing it to explore multiple promising paths simultaneously. However, this also means
that it may get stuck in local optima if the search space is not sufficiently explored.
Local beam search is particularly suitable for problems where the search space is large and
it is desirable to explore multiple potential solutions concurrently. It has applications in
various domains, including scheduling, routing, and machine learning. Despite its
limitations, local beam search remains a valuable technique for addressing optimization
problems efficiently.


